Solving Integral Equations by Means of Fixed Point Theory
نویسندگان
چکیده
One of the most interesting tasks in mathematics is, undoubtedly, to solve any kind equations. Naturally, this problem has occupied minds mathematicians since dawn algebra. There are hundreds techniques for solving many classes equations, facing finding solutions and studying whether such unique or multiple. recent methodologies that is having great success field study fixed point theory. Its iterative procedures applicable a variety contexts which other algorithms fail. In paper, we very general class integral equations by means novel family contractions setting metric spaces. The main advantage fact its contractivity condition can be particularized wide range ways, depending on parameters. Furthermore, involves distinct terms either adding multiplying between them. addition this, makes use self-composition operator, whose associated theorems used more than corresponding ones only using mapping. setting, demonstrate some guarantee existence and, cases, uniqueness, points interpreted as mentioned
منابع مشابه
Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method
The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The ob...
متن کاملSolving Fixed-Point Equations by Derivation Tree Analysis
Systems of equations over ω-continuous semirings can be mapped to context-free grammars in a natural way. We show how an analysis of the derivation trees of the grammar yields new algorithms for approximating and even computing exactly the least solution of the system.
متن کاملExistence of Solutions for some Nonlinear Volterra Integral Equations via Petryshyn's Fixed Point Theorem
In this paper, we study the existence of solutions of some nonlinear Volterra integral equations by using the techniques of measures of noncompactness and the Petryshyn's fixed point theorem in Banach space. We also present some examples of the integral equation to confirm the efficiency of our results.
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملHybrid Fixed Point Theory in Partially Ordered Normed Linear Spaces and Applications to Fractional Integral Equations
In this paper, some basic hybrid fixed point theorems of Banach and Schauder type and some hybrid fixed point theorems of Krasnoselskii type involving the sum of two operators are proved in a partially ordered normed linear spaces which are further applied to nonlinear Volterra fractional integral equations for proving the existence of solutions under certain monotonic conditions blending with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of function spaces
سال: 2022
ISSN: ['2314-8896', '2314-8888']
DOI: https://doi.org/10.1155/2022/7667499